Genetically engineered fish: An unnecessary risk to the environment, public health and fishing communities

The U.S. Food & Drug Administration recently announced it was coming to a decision on approval of the “AquAdvantage Salmon,” an Atlantic salmon that has been genetically engineered to supposedly be faster-growing than other farmed salmon. If approved, this would be the first-ever genetically engineered animal allowed to enter the food supply by any regulatory agency in the world. At least 35 other species of genetically engineered fish are currently under development, including trout, tilapia, striped bass, flounder and other salmon species — all modified with genes from a variety of organisms, including other fish, coral, mice, bacteria and even humans.1 The FDA’s decision on the AquAdvantage genetically engineered salmon will set a precedent and could open the floodgates for other genetically engineered fish and animals (including cows, pigs and chickens) to enter the U.S. market.

Genetically engineered salmon on the path for FDA approval

Despite insufficient food safety or environmental studies, the FDA announced that it is in the process of approving the AquAdvantage Salmon, a genetically engineered Atlantic salmon produced by AquaBounty Technologies. The company originally submitted its application to the FDA in 2001 and the FDA announced in the summer of 2010 it was considering approval of this genetically engineered fish — the first genetically engineered animal intended for human consumption. In December 2012, the FDA released its draft Environmental Assessment of this genetically engineered salmon, moving the agency one step closer towards a final decision on approval.

The AquAdvantage Salmon was developed by artificially combining growth hormone genes from Pacific salmon and DNA from the anti-freeze genes of an eel-like ocean pout. This modification causes the production of growth hormone year-round, creating a fish that the company claims grows at twice the rate of conventionally farmed salmon.

Threats to the environment

Unfortunately, the FDA’s environmental assessment does not properly look at the risks genetically engineered fish pose to the environment.

AquaBounty claims that it will only produce sterile females in order to mitigate the risks from escaped genetically engineered salmon. However, the project specifications AquaBounty submitted to the FDA only require 95 percent of the eggs produced to be sterile, meaning that up to 5 percent of the AquAdvantage Salmon produced in a commercial batch may be fertile.2 This not only calls into question FDA’s assumption about sterility, but raises concerns about the kinds of impacts these fish may have on the environment should they escape. For example, research published in the Proceedings of the National Academy of Sciences concluded that a release of just 60 genetically engineered fish in a population of 60,000 could lead to the extinction of the wild population in less than 40 generations. At a minimum the FDA should provide data showing how this relevant concern will not apply to this application.

Even if escaped fish are sterile they may still cause serious harm to the environment and wild fish populations. The Canadian Department of Fisheries conducted research on Coho salmon with an engineered growth hormone similar to the AquAdvantage Salmon and found that genetically engineered salmon were more aggressive when searching for food (the growth hormone made them hungrier), and in some instances resorted to cannibalism.3 The aggressive...
behavior evident in genetically engineered Coho salmon led to population crashes and even the complete extinction of some wild salmon species in the study.⁴

Anticipating objections to its genetically engineered fish based on the risks to the environment, AquaBounty told the FDA that it would be raising the fish in land-based fish farms. As a result, the FDA limited its environmental review to two small, land-based facilities – an egg production facility on Prince Edward Island, in Canada, and a grow-out facility in Panama where fish are raised to market size. FDA’s narrow look at this application completely ignores the fact that AquaBounty has openly referred to its plans to raise genetically engineered fish all around the world.⁵

Once FDA approval is granted it will be extremely difficult to track the millions of genetically engineered fish and eggs produced as AquaBounty’s operations expand. It will be equally difficult to guarantee that genetically engineered fish are raised in secure inland tanks — a reliable containment system following commercialization is just not conceivable at this time. Even in land-based facilities, farmed salmon have the ability to escape into the wild where they are virtually impossible to recover.

In addition to contaminating the gene pools of wild salmon, genetically engineered fish can spread diseases to wild populations. In 2009, AquaBounty’s egg production facility on Prince Edward Island was infected with Infectious Salmon Anemia,⁶ which it failed to report to the FDA.⁷ ISA is an extremely deadly salmon virus that decimated the Chilean and Scottish salmon farming industries. If ISA or other diseases were to break out at genetically engineered fish farms and then those fish escaped, they could wreak havoc on wild populations.

The environmental risks genetically engineered salmon pose to oceans and fisheries demand a more thorough investigation by the FDA. The agency needs to complete an Environmental Impact Statement to look at the full range of environmental risks posed by genetically engineered salmon, including the impacts of global commercialization. In addition it should conduct a quantitative failure mode analysis, which would assess where containment measures are most likely to fail and the impacts of such failures.⁸

Potential threats to human health

While data on the human health impacts of consuming genetically engineered fish is sparse, recent studies provide cause for concern. Genetically engineered salmon have higher levels of IGF-1 (a growth hormone that may increase risk of several types of cancer if absorbed and biologically active in the human body)⁹ as compared to conventional farmed salmon.¹⁰ There are also concerns about the possible increased risk of allergic reactions to eating genetically engineered salmon.¹¹

Further concern relates to the routine use of antibiotics to control diseases often found in industrial fish farms. Farmed salmon are given more antibiotics than any other livestock by weight.¹² Some of these antibiotics are toxic to humans.¹³ Others are used in human medicine. In both cases, eating farmed fish could mean ingesting those antibiotics, possibly leading to fatal allergic reactions in the first case, or antibiotic resistance in the second.¹⁴ Unfortunately, FDA’s draft EA does not provide adequate data on the type and amount of antibiotics used in the production of AquAdvantage Salmon.

The FDA has nonetheless decided these fish were safe to eat based solely on data provided by AquaBounty, whose sample sizes were as small as six to 12 fish.¹⁵ This is bad science and bad food.

Lack of federal regulation of genetically engineered fish and animals

Unfortunately, there are currently no U.S. laws specifically governing the production and sale of genetically engineered animals. Instead, the FDA regulates genetically engineered animals as “new animal drugs,” using laws written well before the advent of genetic engineering for such things as chicken feed additive and cow vaccines. To receive FDA approval to sell a genetically engineered fish for human food, producers must complete a New Animal Drug Application.¹⁶
Approving a genetically engineered animal for food under the banner of a “drug” is extremely problematic. First, animal drug laws were not written to regulate living organisms that can reproduce and move of their own accord — both of which genetically engineered animals can do. Second, the new animal drug approval process is confidential and mostly closed to the public until complete, due to confidential information laws for drug products, severely limiting public participation in the regulatory process.

Instead of relying on antiquated laws for regulating animal drugs, the FDA must develop new regulations that are specific to genetically engineered animals and take into account the risks GE animals pose to the environment, human health and related socio-economic concerns.

Put the brakes on approval of genetically engineered salmon

The FDA must put the brakes on the approval of genetically engineered salmon until it has conducted a comprehensive and independent Environmental Impact Statement, and until proper laws are on the books to deal with the novel risks to human health and the environment posed by genetically engineered fish and other genetically engineered animals.

Friends of the Earth strongly opposes the approval and commercialization of genetically engineered fish and is urging the FDA to reject AquaBounty’s genetically engineered salmon. Should the FDA decide to approve the AquAdvantage genetically engineered salmon despite widespread public opposition, clear, mandatory labeling is an absolute must, in order to allow consumers to make informed purchasing decisions.

(Endnotes)
4 Ibid.
6 “AquAdvantage” Salmon Draft Environmental Assessment.” Page 43.
8 Kapuscinski, Anne, and Fredrik Sundstrom. Comments on Environmental Assessment for AquAdvantage Salmon and Briefing Packet on AquAdvantage Salmon for the Veterinary Medicine Advisory Committee.
11 Ibid.
12 “Farmed Salmon Facts” Wild Pacific Salmon LLC.
15 Ibid.
16 Briefing Packet – AquAdvantage Salmon,” Food and Drug Administration, Center for Veterinary Medicine.